
pH Value

The water molecule has the property of dissociating into two ionic components in aqueous solutions.

H₂O ≒ H+ + OH-

The H⁺ ion is termed hydrogen ion or proton, the OH⁻ ion hydroxide ion.

The pH value describes the activity of hydrogen ions in aqueous solutions on a scale of -1 to 15. Based on this scale, liquids are characterized as being acidic, alkaline or neutral: a solution which is neither acidic or alkaline is neutral. This corresponds to a value of 7 on the scale. Acidity indicates a higher activity of hydrogen ions and a pH value lower than 7. Alkaline solutions are characterized by a lower hydrogen ion activity or higher hydroxide ion activity, respectively, and a pH value above 7. The graph below uses examples to illustrate the pH scale.

The pH scale is logarithmic. A difference of one pH unit represents a tenfold, or ten times increase or reduction of hydrogen ion activity in the solution. This explains how a solution's aggressiveness increases with the distance from the neutral point.

The pH value can be measured using electrochemical measuring systems, litmus paper, indicators and colorimeters. Of these methods, electrochemical sensors provide the most accurate results.

The pH electrode is an electrochemical sensor that consists of a measuring electrode and a reference electrode. The measuring electrode is made of special glass which, due to its surface properties, is particularly sensitive to hydrogen ions. It is filled with a buffer solution which has a pH value of 7. When placing the pH electrode into a test solution, the change in voltage is measured by the electrode by comparing the measured voltage to the stable reference electrode. This change is recorded by the meter and converted into the pH value displayed. With modern IDS sensors the signal processing is performed inside the sensors providing better signal quality and additional documentation features.

● Recommended by WTW ○ Cond	ditional	ly appl	icable		– Not re	ecom	nmended				
,			Lab [®]					Port	able me	ters	
				0					ProfiLine		-
Application range	Multi IDS 4	рН 7110	рН 7310	pH/ION 7320	ProfiLine pH 1970i	VARIO® pH	MultiLine [®] .	рН 3110	рн 3210	рН 3310	pH/ION 340i
Routine measurement	0	•	0	0	0	•	0	•	•	0	0
Routine measurement with documentation	•	_	•	•	•	_	•	_	_	•	•
AQA with documentation	•	_	•	•	•	_	•	_	_	•	•
R&D high resolution and precision	•	_	•	•	•	_	•	_	•	•	•
Control measurements	•	_	•	•	•	•	•	_	•	•	•
LIMS connection	•	_	•	•	0	_	•	_	_	0	0
Quality assurance	•	_	•	•	•	_	•	_	0	•	•
Training	0	•	0	•	0	•	0	•	•	0	0
Service	_	_	_	_	•	•	•	•	•	•	•
Laboratory measurements	•	•	•	•	•	•	0	_	_	0	О
Field measurements	_	_	_	_	•	_	•	•	•	•	•
Depth measurements	_	_	_	_	•	_	•	_	_	_	_
External control/ PC connection/ PC control	- • -	- - -	- • -	- • -	•	- - -	- • -	- - -	- - -	- •	•
pH/ISE function	_	_	_	•	_	_	_	_	-	_	•
Ion-specific measurement programs	_	_	-	•	_	_	_	_	-	-	_
see page	30	33	3 <i>2</i>	49	38	39	34	3 <i>7</i>	36	35	51
* North American version	For	оН тес	asureme	nt wit	h multi-p	aran	neter instri	uments	, see pag	es 14	and 18
		(Convent	ional				D	igital ⁰	D 8	
Application range electrodes	Ge electi		Liqui electro		Specia electroc		Gel electrode		iquid ctrolyte	elec	ecial trode adapter
Chemical solutions	С)	•		•		0		•		•
Ultrapure water (Pharmacopeia)	_		О		•		_		О		•
Ground water	•)	О		_		•		0		_
Surface water	•)	0		_		•		О		_
Depth measurements (barrages)	_		_		•		_		_		_

			-	Digital B			
Application range electrodes	Gel electrode	Liquid electrolyte	Special electrode	Gel electrode	Liquid electrolyte	Special electrode with adapter	
Chemical solutions	0	•	•	0	•	•	
Ultrapure water (Pharmacopeia)	_	О	•	-	0	•	
Ground water	•	О	_	•	0	_	
Surface water	•	О	_	•	0	-	
Depth measurements (barrages)	_	_	•	_	_	-	
Laboratory measurements	О	•	•	0	•	•	
Food industry	О	•	•	О	•	•	
Swimming pools	•	_	_	•	_	-	
Cosmetics/detergents	_	•	•	_	•	•	
Semi-conductor industry	_	О	•	_	0	•	
Paint/varnish (water-soluble)	О	•	•	О	•	•	
Galvanic	•	О	_	•	О	_	
applicable instruments	all con	ventional instr	uments	all MultiLir	ne® IDS and in	noLab® IDS	

NEW

Laboratory pH Meters

Along with weight and temperature measurements, pH is the most commonly measured parameter in the laboratory. With inoLab®, WTW offers a family of laboratory instruments that meet all application requirements from routine measurements to research applications.

Measuring pH securely...

... with the innovative inoLab® Multi 9310 IDS

The new inoLab® Multi 9310 IDS is ideal for pH measurements in the laboratory. The IDS technology enables exceptional measuring quality and efficient documentation in the easiest way.

inoLab® Multi 9310 IDS

- Optimum measuring quality
- Digital sensor recognition
- Intelligent sensor rating

Measuring safety

- The digital signal transmission eliminates interferences, calibration data is allocated correctly, sensor data is easily transmitted.
- The intelligent sensor evaluation (QSC) gives information about the current condition of the electrode and therefore improves the operational reliability.
- The CMC function visualizes the optimal measuring range and supports a correct measuring.

WTW)=

Digital Laboratory Meters

GLP/AQA documentation

- Automatic, digital recording of all sensor data for traceability of measuring values
- User administration can be activated for allocation of user and measuring results

• Transfer of all data in .csv format via USB interface to PC, on demand formatted transfer into Excel (MultiLab® Importer, included in the delivery scope or as download).

• Data output via optional built-in printer possible.

Compatible for conventional pH measurements

 With the adapter ADA S7/IDS special pH electrodes with S7 plug head can be connected easily to the inoLab® Multi 9310 IDS.

Flexible and powerful

- 1- to 5-point calibration with calibration timer for all measuring tasks
- 22 stored buffer sets for easy calibration
- 1- to 5-point calibration with customized buffers
- Backlit graphic display with CMC and QSC display

Technical Data	
Model	inoLab® Multi 9310 IDS 🗓
Measuring channel	1 (universal)
Display	LCD graphic, backlit
CMC/QSC	Yes/Yes
Data storage	Manual: 500 data sets/ Automatic: 5000 data sets
Logger	Manual/time-controlled
Interface	Mini USB
Printer (optional)	Thermo printer, width 58 mm
Power supply	Universal power supply 100 to 240 V, 50/60 Hz, 4 x 1,5 V AA or 4 x 1.2 V NiMH akku

Ordering Information

Digital inoLab® multi-parameter	r SETs and	Order No.	
inoLab® Multi 9310 IDS SET 1	Digital multi-parameter benchtop meter, set including IDS sensor, for measurements/documentation	1FD351	
according GLP/AQA. With single channel input for pH/mV, dissolved oxygen and conductivity. Meter			
with universal power supply, stand and operation manual, digital IDS pH electrode SenTix® 940,			
	buffer 4, 7 and 10.01, 3 mol/l KCl, software and USB cable.		
inoLab® Multi 9310 IDS SET 2	Meter see above, set with digital IDS pH electrode SenTix® 980.	1FD352	

For other SETs or electrodes in SET, see WTW Product Details

Reliable pH documentation...

... with the inoLab® pH 7310

The new inoLab® pH 7310 is the ideal instrument for precision measurements and automatic documentation complying with GLP/AQS in quality laboratories throughout all industries. Optional built-in printer available on demand.

inoLab® pH 7310

- USB interface for fast data transfer
- Data output in .csv format or via optional built-in printer
- CMC-function for monitoring the measuring range

Measuring reliability

- Repeatable measuring results provided by the active, automatic AutoRead function with recognition of stable end values
- The CMC function visualizes the optimal measuring range and supports correct measuring
- Graphic display with plain text menu for convenient and secure operation

GLP/AQA documentation

- Alphanumeric entry of electrode serial number
- Transfer of all data in .csv format via USB interface to PC, on demand formatted transfer into Excel (MultiLab[®] Importer, included in the delivery scope or as download).
- Data output via optional built-in printer possible

Flexible and powerful:

- 1- to 5-point calibration with calibration timer for all measuring duties
- 22 stored buffer sets for easy calibration
- 1- to 5-point calibration with customized buffers
- Backlit graphic display with CMC

Measuring pH precisely...

... with the inoLab® pH 7110

The new inoLab® pH 7110 is ideal for routine measurements in the laboratory where automatic documentation is not the

With a smooth and easily cleaned surface.

inoLab® pH 7110

- Active AutoRead function
- Easy calibration with adjustable calibration timer
- Intuitive operation with clearly arranged keypad

Measuring reliability

- Repeatable measuring results provided by the active, automatic AutoRead function with recognition of stable
- Safe operation: Automized functions reduce the number of keys
- An adjustable timer recalls the next calibration and so with improves the measuring accuracy

Easy and reliable:

- 1- to 3-point calibration with calibration timer
- MultiCal® calibration system
- Automatic temperature compensation

Technical Data					
Model	inoLab® pH 7110	inoLab® pH 7310			
Range/ pl	-2.0 20.0 ±0.1 pH	-2.0 20.0 ±0.1 pH			
Resolution	-2.00 20.00 ±0.01 pH	-2.00 20.00 ±0.01 pH			
	-2.000 19.999 ±0.005 pH	-2.000 19.999 ±0.005 pH			
m\	±(1200.0 ±0.3) mV	±(1200.0 ±0.3) mV			
Temperature	±(2000 ±1) mV	±(2500 ±1) mV			
Accuracy pl	±0.005 pH	±0.005 pH			
(±1 digit)	±0.01 pH	±0.01 pH			
m\	/ ±0.3 mV, ±1 mV	±0.3 mV, ±1 mV			
Temperature	±0.1 K	±0.1 K			
Calibration	1, 2 or 3-point calibration	1, 2, 3, 4, 5-point calibration			
	WTW technical buffers, DIN/NIST buffers	WTW technical buffers, DIN/NIST buffers plus 20 additional buffer se			

Ordering Information

inoLab® Labor-pH-Meter SETs		☐ Order No.	▲ Order No.
inoLab® pH 7110 SET 7/SET 2	Easy-to-operate basic pH/mV benchtop meter for routine measurement. Meter with universal power supply, stand and operation manual. Combined pH electrode SenTix® 42/41, buffer 4, 7 and 10.01, 3 mol/l KCl	1AA127	1AA112
inoLab [®] pH 7310 SET 4	Convenient, menu controlled pH/mV benchtop meter for measurements/documentation according GLP/AQA. Set including combined pH electrode. Meter with universal power supply, stand and operation manual. Combined pH electrode SenTix® 81, buffer 4, 7 and 10.01, 3 mol/l KCl, software and USB cable.	na	1AA314
inoLab® pH 7310P	Convenient, menu controlled pH/mV benchtop meter for measurements/documentation according GLP/AQA, with integrated thermal printer. Single meter with universal power supply, stand and operation manual. CD-ROM including software and USB cable.	1AA320P	1AA310P

☐ with BNC plug ▲ with DIN plug For other SETs or electrodes in SET, see WTW Product Details

NEW

Portable pH Meters

pH is a parameter that is also very important for on-site measuring. The application range reaches from determination of pH value in surface waters to process measurements in chemical factories.

Determining pH securely...

... with the versatile Multi 3410

The single channel multi-parameter measuring instrument Multi 3410 is perfectly suited for portable pH measurements under all conditions in the field and during operation process. The IDS technology enables optimal measurements and efficient documentation in the easiest way. The Multi 3410 also allows measurements using additional sensors and parameters.

Multi 3410 III

- Measuring safety without compromises
- Digital sensor recognition
- Trouble-free pH measurements

Measuring safety

- The digital signal transmission eliminates interferences, calibration data is allocated correctly. Measurements with long cables for inaccessible locations are no problem.
- The intelligent sensor evaluation (QSC) gives information on the current condition of the electrode and improves the operational reliability.
- The CMC function visualizes the optimal measuring range and supports a correct measuring.

GLP/AQA documentation

- Automatic, digital recording of all sensor data for traceability of measuring values.
- User administration can be activated for correct allocation of user, measuring location and measuring results.
- Transfer of all data in .csv format via USB interface to PC or USB memory stick, on demand formatted transfer into Excel (MultiLab® Importer, included in the delivery scope or as download).

General Feat	ures				
Model	Multi 3410 🗓				
Data storage	Manual: 500 data sets/ Automatic: 10.000 data sets				
Data logger	Manual/time-controlled				
Interface	USB-A and Mini-USB				
Power supply	Universal power supply with charging function or 4 x 1.2 V NiMH rechargeable batteries				
Ordering Inf	ormation				
MultiLine ^{® ព} ្រួ	Order No.				
field measur pH electrode instruction n driver softwa	digital multi meter for portable ement. Case set with digital IDS e SenTix® 940, QSC Kit, short nanual, stand, beaker, CD-ROM, are for USB, rechargeable batteries, rsal power supply and accessories.				
IP 67 CETLUS 3	Year For other electrodes in Set see WTW Product Details				

Portable Meters

ProfiLine pH portable meters

Reliable pH documentation...

... with the ProfiLine pH 3310

The pH 3310 is an elegant combination of a robust portable meter and a data logger for storing measuring batches and processing those in the following via PC.

ProfiLine pH 3310

- Waterproof USB interface for fast data transfer
- Data output in .csv format
- Data logger for up to 5000 recordings

Measuring safety

- Repeatable measuring results provided by the active, automatic AutoRead function with recognition of stable end values
- The CMC function visualizes the optimal measuring range and supports correct measuring.
- Graphic display with plain text menu for convenient and secure operation

GLP/AQA documentation

 Transfer of all data in .csv format via USB interface to PC, on demand formatted transfer into Excel (MultiLab[®] Importer, included in the delivery scope or as download).

Flexible and powerful

- 1- to 5-point calibration with calibration timer for all measuring duties
- 22 stored buffer sets for easy calibration
- Backlit graphic display with CMC

Param

Mu

Hd

OR

SE

Dissolved Oxygen

logger/ Conductivity

BOD/ spiration

Photomet

Turbidity

Colony

Software/ Printers

Measuring pH precisely...

... with the ProfiLine pH 3210

The ProfiLine pH 3210 is a convenient pH/mV all-rounder for many applications.

ProfiLine pH 3210

- Graphic display with plain text menu
- 1- to 5-point calibration
- CMC function for monitoring the measuring range

Measuring reliability

 Repeatable measuring results provided by the active, automatic AutoRead function with recognition of stable end values

Measuring values

- The CMC function visualizes the optimal measuring range and supports correct measuring.
- Silicone keypad with tangible key click, optional casing for field operation

Documentation

Data output via display for occasional documentation

Flexible and powerful

- 1- to 5-point calibration with calibration timer for all measuring duties
- 22 stored buffer sets for easy calibration
- Backlit graphic display with CMC

pH measuring made easy...

... with the ProfiLine pH 3110

The pH 3110 is ideal for all seeking an easy, robust and waterproof instrument for portable pH measuring.

ProfiLine pH 3110

- pH or ORP measurements
- Easy 1- to 3-point calibration with adjustable calibration timer
- Robust and waterproof (IP 67)

Measuring safety

- Repeatable measuring results provided by the active, automatic AutoRead function with recognition of stable end values
- Safe operation: Automized functions reduce the number of keys (6)
- Waterproof DIN-socket enables measurements in humid environments

Easy and reliable:

- High-visibility display for measuring value and temperature
- Silicone key pad with tangible key click, can also be operated with gloves
- For field operation in a case set with proven electrodes

Technical Data							
Model	ProfiLine pH 3110	ProfiLine pH 3210	ProfiLine pH 3310				
Range/ pH Resolution mV Accuracy Temperature	-1200.0 +1200.0 ±0.3 mV -2000 +2000 ±1 mV	-2.000 +19.999 ±0.005 pH -1200.0 +1200.0 ±0.3 mV -2500 +2500 ±1 mV -5.0 +105.0 ±0.1 °C (23 221 °F)				
Calibration	1, 2 or 3-point calibration WTW technical buffers, DIN/NIST buffers	1, 2, 3, 4, 5-point calibration WTW technical buffers, DIN/NIST buf	fers plus 20 additional buffer sets				
Memory/Logger	_	Manual 200	Manual 500/5000 automatic				
Display	7-Segment LCD, customized	LCD Graphic, backlit					
Continuous operation	Up to 2500 hrs.	Up to 1000 hrs. without/150 hrs. with	h backlight				

Ordering Information

ProfiLine Portable pH M	eter SETs	Order No.
pH 3110 SET 2	Robust and waterproof portable pH meter, for battery operation, in portable case set with SenTix® 41	2AA112
pH 3210 SET 2	Robust and waterproof portable pH meter with data logger, for battery operation, in portable case set with SenTix $^{\odot}$ 41	2AA212
pH 3310 SET 2	Robust and waterproof portable pH meter with data logger and USB Mini-B interface, for battery operation, in portable case set with SenTix® 41	2AA312

For other electrodes in Sets see WTW Product Details

ProfiLine pH Field Meters

All WTW meters in the ProfiLine pH 1970i series are both waterproof (IP 66) and submersible (IP 67). In addition, these units float, a convenient feature when used in field applications at lakes or streams. With GLP memory functions, real-time clock, a display corresponding to the recorder output, 800 data records memory capacity, a carry handle and strap.

ProfiLine pH 1970i

- Robust, shockproof
- Fully waterproof

 Standard pH measurement and pH measurement down to depths of 100 m (330 ft) The ProfiLine 1970i, supplied with integrated powerful NiMH rechargeable batteries, is a complete pH measuring system. When used with the TA 197 pH Depth Armature, the ProfiLine 1970i, with its built-in preamplifier, is accurate to a depth of 100 m (330 ft).

Technical Data		
Model	ProfiLine pH 1970i	
Range/ pH	-2.00 +19.99 pH,	
Resolution mV	-199.9 +199.9 mV; -1999 +1999 mV	
Temp.	-5.0 +105.0 °C (23 221 °F)	
Accuracy pH	±0.01 pH,	
(±1 digit) mV	±0.5 at +15 °C +35 °C (59 95 °F), ±1 at +15 °C +35 °C (59 95 °F)	
Temp.	±0.1 K	
Calibration	MultiCal® automatic calibration:	
	1,2,3-point calibration, AutoCal, AutoCal-Tec and ConCal®	
Ordering Infor	mation	
ProfiLine pH Field Meter – with ւ	universal power supply 100-240 VAC (50/60 Hz) included	Order No.
ProfiLine pH 1970i	Robust, waterproof, submersible pH/mV meter	3A30-110

For depth armatures for measurements down to depths of 100 m (330 ft) see WTW Product Details

VARIO®

You notice it immediately: in addition to its ergonomic form, the new VARIO® has no keys. The innovative touch screen allows access to all functions with one-touch simplicity.

VARIO® pH

- Compatible with most electrode types
- One-hand operation
- Twistable display

Measuring in no time at all

Simply touch the display and VARIO® is ready for use. Immersion in the solution starts the measurement automatically. The stable measurement can be read from the large display together with the temperature. Memory has capacity for up to 50 measured values which can be stored for later evaluation.

When the VARIO® is not being used for pH measurements, it can be used as a laboratory clock or timer.

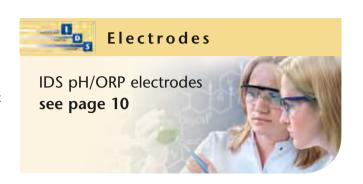
> Light, handy, rugged – it finds a place in every laboratory coat without dripping or leaving nasty stains, as it can be stored without KCl.

The VARIO® is an essential tool whenever speed is required in the laboratory or in production.

Technical Data Model VARIO® pH pH range -2.00 ... 16.00 pH accuracy ±0.01 pH **Temperature** -5.0 ... 100.0 °C (23 ... 212 °F) Automatic buffer recognition TEC/NIST **Calibration points** 3 (MultiCal®)

Ordering Information

VARIO® Order No. VARIO® SET V VARIO® in the portable case set, incl. short electrode with built-in temperature probe 2V00-001V and technical buffer 4 and 7



For other electrodes, see WTW Product Details

SenTix® pH electrodes for every application

SenTix $^{\otimes}$ quality electrodes by WTW – convenient measurement and precision.

- Low-resistance glass membranes guarantee stable measuring signals even at low temperatures.
- Silver ion-free reference electrolyte, together with the proven platinum wire diaphragm, prevent measurement problems by precipitating silver compounds.
- Functional slide for accessing the refill opening for electrodes with liquid electrolyte.
- Connectors: Waterproof DIN connector, BNC connector, fixed cable (1 or 3 m, 3 ft. or 9 ft.) or plug head (S7 or SMEK).

Low-maintenance pH electrodes with gel electrolyte

Ideal for portable measurements, as well as for routine measurements in-the-laboratory. With or without built-in temperature probe all electrodes have robust plastic shafts and a low-maintenance gel reference system.

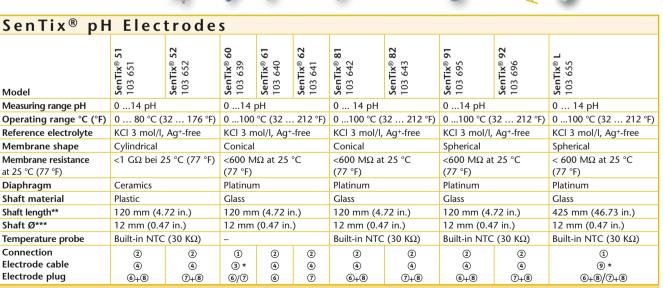
		S
		M
	VIV	
- G		-
		M 0
	AND LOCAL PROPERTY.	0
		R
	College of the	N.
	A CONTRACTOR	N
GTC.		at
	6	D
60		S
		S
The state of the s		S
		T.
200		
		C E E
		E AND AND E

SenTix® pH Electrodes								
Modell	SenTix[®] 20 103 630	SenTix[®] 21 103 631	SenTix® 21-3 103 632	SenTix[®] 22 103 633	SenTix[®] 41 103 635	SenTix® 41-3 103 636	SenTix® 42 103 637	
Measuring range pH		01	l4 pH		()14 pł	1	
Operating range °C (°F)	0	. 80 °C (32 176	ś °F)	() 80 °(С	
Reference electrolyte	Gel Gel							
Membrane shape	Cylindrical Zylinder							
Membrane resistance at 25 °C (77 °F)	<1 GΩ <1 GΩ							
Diaphragm	Fiber Fiber							
Shaft material	Plastic Plastic							
Shaft length**	120 mm (4.72 in.) 120 mm (4.72 in.)				2 in.)			
Shaft Ø***	12 mm (0.47 in.) 12 mm (0.47 in.)							
Temperature probe	— Built-in N				n NTC (3	80 KΩ)		
Connection Electrode cable Electrode plug	① ③* ⑥/⑦	2 4 6	2 5 6	② ④ ⑦	② ④ ⑥+⑧	② ⑤ ⑥+⑧	② ④ ⑦+8	

^{*} not included ** ±2 mm/±0.08 in.

^{** ±2} mm/±0.08 in. *** ±0.5 mm/±0.02 in.

①: Plug head, ②: Fixed cable, ③: AS/DIN, AS/DIN-3 or AS/BNC, ④: Cable length 1 m (3 ft), ⑤: Cable length 3 m (9 ft), ⑥: DIN plug, ⑦: BNC plug, ⑨: Banana plug



SenTix® Special Electrodes - pH electrodes for unique applications

Special samples need special electrodes. SenTix® special electrodes can take on the challenges associated with measuring the pH value of surfaces, solids, suspensions, emulsions, low ionic samples, smallest volumes and more. For those who require a non-glass electrode: The

SenTix® FET can be used with every WTW pH meter.

* not included

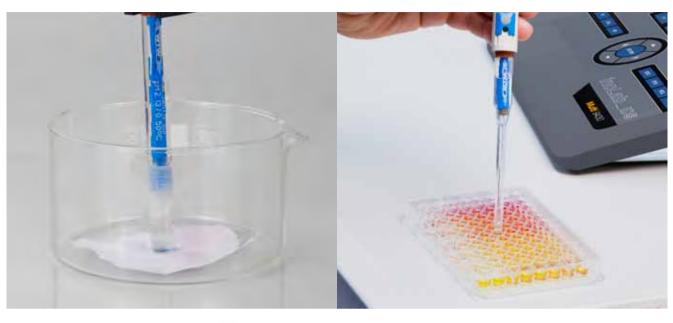
** ±2 mm/±0.08 in. *** ±0.5 mm/±0.02 in. ①: Plug head, ②: Fixed cable, ③: AS/DIN, AS/DIN-3 or AS/BNC, ④: Cable length 1 m (3 ft), ⑤: Cable length 3 m (9 ft), ⑥: DIN plug, ⑦: BNC plug, ⑧: Banana plug

Specialists for any event – pH electrodes for special applications

The consistencies of samples in which pH is measured are very different. Liquid or solid, low-ion medium or highly concentrated, aqueous or non-aqueous phases, with or without suspended solids. In some cases even smallest volumes have to be identified and sometime glass is not acceptable. All of this can be tackled using the specialists of WTW:

For measurements in or on solids, penetration or surface electrodes are recommendable. The split ring electrode with liquid filling is suitable for determining the pH value in low-ion or concentrated solutions and also for emulsions. Samples with suspended solids can be determined the easiest using a polymer electrode. Microelectrodes can help when there are only low volumes available. And when glass is not accepted, for example in the food industry: then the ISFET electrode is the right choice.

SenTix® Sp	pecial p	H Elect	rodes						
•	SenTix® H	SenTix® HW	SenTix® HWS	SenTix® SP	SenTix® SP-DIN	SenTix® Sur	SenTix® FET-D	/-B	
Model	103 644	103 650	103 662	103 645	103 730	103 646	103 700	103 702	
Measuring range pH	014 pH	014 pH	0 14 pH	213 pH		213 pH	0 14 pH		
Operating range °C	0 80 °C	0 60 °C	-5 100 °C	0 80 °C		0 50 °C	0 60 °C		
	(32 176 °F)	(32 140 °F)	(23 212 °F)	(32 176 °	'F)	(32 122 °F)	(32 140 °F)		
Reference electrolyte	KCl 3 mol/l, Ag	-free		Polymer		Polymer	KCl 3.3 mol/l, Ag+-free		
Membrane shape	Cylindrical	Cylindrical	Spherical	Spear		Flat	ISFET		
Membrane resistance	< 2 GΩ	$<$ 800 M Ω	$<$ 600 M Ω	$<$ 400 M Ω		< 1 GΩ	_		
at 25 °C (77 °F)									
Diaphragm	Split ring	Split ring	Split ring	Hole		Split ring	Fritted polyethylene		
Shaft material	Glass	Glass	Glass	Plastic		Glass	Plastic		
Shaft length	170 mm	170 mm	170 mm	65/25 mm		120 mm	86 mm		
(±2 mm/±0.08 in.)	(6.69 in.)	(6.69 in.)	(6.69 in.)	(2.56/0.98 in.)		(4.72 in.)	(3.39 in.)		
Shaft Ø	12 mm	12 mm	12 mm	15/5 mm		12 mm	17 13 mm		
(±0.5 mm/±0.02 in.)	(0.47 in.)	(0.47 in.)	(0.47 in.)	(0.59/0.02 in.)		(0.47 in.)	(0.670.51 in.)		
Temperature probe	_	_	Built-in NTC (30 KΩ)	_		_	NTC (30 KΩ)		
Connection	1	1	1	1	2	1	2	2	
Electrode cable*	3 *	3 *	9 *	3 *	4	3 *	4	4	
Electrode plug	6/7	6/7	6+8/7+8	6/7	6	6/7	6 + 8	7+8	


^{*} not included

^{** (±0.5} mm/±0.02 in.)
*** from upper edge of ground

①: Plug head, ②: Fixed cable, ③: AS/DIN, AS/DIN-3 or AS/BNC, ④: Cable length 1 m (3 ft), ⑤: Cable length 3 m (9 ft), ⑥: DIN plug, ⑦: BNC plug, ⑧: Banana plug, ⑨ AS S/D1 or AS S/D3 or AS S/B1 or AS S/B3, ⑩ AS S/R

pH Electrodes

SenTix® Special pH Electrodes												
•	SenTix [®]											
	Mic	Mic-D Mic-B		SenTix® RJS	SenTix® pH	SenTix® R	SenTix® B	SenTix® V				
Model	103 647	103 660	103 661	103 663	103 667	103 668	103 669	103 690				
Measuring range pH	0 14 pH		2 13 pH	0 14 pH	_	_	0 14 pH					
Operating range °C (°F)			0 80 °C (32176 °F)	0 80 °C (32176 °F)	-5 100 °C (23 212 °F)	-5 100 °C (23 212 °F)	0 80 °C (32 176 °F)					
Reference electrolyte	` /		Polymer	_	KCl 3 mol/l, Ag+- free	Double electrolyte system	Gel					
Membrane shape	Cylindrical		Calotte	Spherical	_	-	Flat					
Membrane resistance at 25 °C (77 °F)	< 700 MΩ	< 1 GΩ		< 600 MΩ	< 600 MΩ	-	_	< 500 MΩ				
Diaphragm	Ceramic	Platinum	1	Split ring	_	Platinum	Split ring	Fiber				
Shaft material	Glass		Glass	Glass	Glass	Glass	Noryl					
Shaft length (±2 mm/±0.08 in.)	40/80 mm (1.57/3.15 in.)	96 mm (***	(3.78 in.)	120 mm (4.72 in.)	120 mm (4.72 in.)	120 mm (4.72 in.)	103 mm (4.06 in.) ***	31/20 mm (1.22/0.79 in.)				
Shaft Ø **	12/5 mm (0.47/0.02 in.)	3 mm (0).12 in.)	12 mm (0.47 in.)	12 mm (0.47 in.)	12 mm (0.47 in.)	12 mm (0.47 in.)	17/19 mm (0.67/0.75 in.)				
Temperature probe				Built-in NTC (30 KΩ)	_	-		NTC (30 KΩ)				
Connection	1	(1	1	1	1	_				
Electrode cable*	③ *	(4	_	9 *	③ *	10 *	10 *					
Electrode plug	⑥ /⑦	6,	/⑦	6+8/7+8	6/7	8	8					

^{*} not included ** (±0.5 mm/±0.02 in.) *** from upper edge of ground ①: Plug head, ②: Fixed cable, ③: AS/DIN, AS/DIN-3 or AS/BNC, ④: Cable length 1 m (3 ft), ⑤: Cable length 3 m (9 ft), ⑥: DIN plug, ⑦: BNC plug, ⑧: Banana plug, ⑨ AS S/D1 or AS S/D3 or AS S/B1 or AS S/B3, ⑩ AS S/R

Calibration and Maintenance Supplies

All WTW Technical Buffers are certified accurate and are NIST/DIN traceable.

(see page 150, Services).

Buffer bottles from WTW

- Easy-to-dispense
- Easy-to-clean
- Reliable calibration

QSC (Quality Sensor Control):

The QSC kit, consisting of three precision DIN buffers including pH 4.01, pH 6.87 and pH 9.18 with a deviation of \pm 0.01 pH at 25 °C allows an initial calibration of the IDS pH electrodes. Ideal for quality control: All subsequent calibrations are compared with this calibration and therefore deliver the precise current state of the sensor.

Applicable buffers												
	PL 4/7/9 DIN/NIST	STAPL 4/7/9 DIN/NIST	TEP 4/7 Trace	TEP 10 Trace	TEP 10	TPL 4/7 Trace	TPL 10 Trace	TPL 10				
inoLab®, Multi 350i/3500i*	•	•	•	•	_	•	•	_				
VARIO® pH	•	•	•	•	_	•	•	_				
pH 3110, pH 3210, pH 3310, pH 315i/3150i*, 330i/3300i*, 340i/3400i*, pH/ION 340i/3400i*, pH 197i/1970i	•	•	•	•	_	•	•	-				
pH/Cond 340i/3400i*, pH/Oxi 340i/3400i*, Multi 340i/3400i*, Multi 3410, 3420, 3430, Multi 197i/1970i	• **	• **	•	•	_	•	•	-				
inoLab® Level 1, 2, 3/pH 197	•	•	•	_	•	•	_	•				

For ordering information for calibration and maintenance supplies, see WTW Product Details

** not Multi 340i/3400i*, Multi 197i/1970i

^{*} North American version

- WTW

pH Electrodes & Accessories

Application														
 Recommended by WTW 	7 11										_			
	SenTix® V	SenTix® 20 21, 22	SenTix [®] 41, 41-3, 42, RJS, 940	SenTix® 51, 52 950	SenTix® 60, 61 62	SenTix® 81, 82 980	SenTix® 91, 92, L	SenTix® H	SenTix® HW, HWS	SenTix® Sp, Sp-DIN	SenTix® Sur	SenTix® Mic, MIC-D, MIC-B	SenTix® FET	SenTix [®] ORP, ORP 900 PtR, Ag, A
Acids			740		•	•	•		0			WIC-D		Au, ORF
Ammonia					0	0	0	•						
Aquarium water	•	•	•	•	0	0	0							ORP, PtF
Beer				•	•	•	_	_	•				_	
Beverages Bleach solution				•	•	•	•	•	0				0	
Boiler feedwater					0	0	0		•					
Bread					9	9	J			•			•	
Cheese										•			•	
Coffee extract				0	•	•	•		•				•	
Condensate									•					
Cosmetics	0								•				•	
Demineralized water Developer			RJS*		0	0	0	•	•					
Developer Dispersion colors	0		RJS*		J	J	J	•	•					
Distilled water			NJ9						•					
Drinking water	0	0	0	•	•	•	•		0					
Electroplating baths	0		RJS*	•	•	•	•		0					
Electroplating wastewater	•	•	•	0	0	0	0		0					0
Extracts					0	0	0		•					
Fixing baths			RJS*	0	0	0	0	•	•					ORP, PtF
Fruit Fruit juice	0			•	•	•	•		0	•			•	
Ground water	0	•	•	0	0	0	0		0				0	PtR*
Household cleaners	0	0	0	0	•	•	•	•	0					1 (11
Juice	0			•	•	•	•		0				0	
Leather	0										•			
Lemonade				•	•	•	•	_	0				0	
Lyes								•						
Margarine Meat										•			•	
Milk									•				0	
Mineral water				0	•	•	•		0				0	
Non-aqueous liquids				0	0	0	0		0					
Oil/water emulsions			RJS*						•					
Paint, water-soluble	0		RJS*						•		_		•	
Paper	0				•		•				•			
Paper extract Protein-containing liquids					•	•	•		•			MIC-D/-B*		
Rainwater					0	0	0		•			IVIIC-D/-D		
Saliva	•										•	0		
Salt solutions	0	0	0	0	•	•	•	0	•					
Saltwater				0	0	0	0	0	•					
Sausage	~									•			•	
Shampoo Skin	0								•		•		•	
Soil extract	J				•	•	•		•					
Solids (penetration)										•			0	
Solids (surface)	0										•			
Sulfide-containing liquids			RJS*						•					PtR*
Surface water	0	•	•	•	•	•	•		0					
Suspensions	-		RJS*	-					•					
Swimming pool water	•	•	•	•	0	0	0							
Tap water Tris buffer solutions	0	0	0	•	•	•	•		•					
Vegetable juice					•	•	•		0				0	
Vegetables					-		•		3	•			•	
Wastewater	0	•	•	0	0	0	0							PtR*
Wine				•	0	•	•							
Yogurt	SenTix® V	SenTix® 20 21, 22	SenTix® 41, 1-3, 42, RJS	SenTix® 51, 52 950	SenTix® 60, 61 62	SenTix® 81, 82 980	● SenTix® 91, 92, L	SenTix® H	SenTix® HW, HWS	SenTix® Sp, Sp-DIN	SenTix® Sur	SenTix® Mic, MIC-D,	SenTix® FET	SenTix [©] ORP, ORP 900

** for ORP Measurement see page 46